Le projet de pilote automatique
Navigation: Accueil -> Le projet de pilote automatique
Sommaire
L'objectif du projet
J'ai eu l'idée et l'envie de concevoir un pilote automatique pour mon bateau basé sur un Raspberry PI et un arduino.
A cette étape j'imagine que le Raspberry sera trop lent pour réagir suffisament vite sur la barre.
J'ai lu quelques articles dans lesquels les formules mathématiques m'ont un peu effrayé.
J'ai donc décidé une approche plus empirique;
Voici le principe général de réalisation du pilote :
L'arduino
Commande du cap
L'arduino aura la tâche d'assurer le cap demandé.
Le cap sera programmé par un clavier équipé de boutons poussoir.
+ 1° - 1° + 10° - 10° auto -> passage en mode pilote automatique standby -> passage en pilotage manuel
Gyroscope, accéléromètre et magnétomètre
L'arduino sera relié à une carte comportant les fonctionnalité suivantes
- gyroscope
- accéléromètre
- magnétomètre
- Le lien vers le site aliexpress : https://www.aliexpress.com/wholesale?catId=0&initiative_id=SB_20200302145018&SearchText=MPU+9250
- Le lien vers les spécifications de la carte
La station météo basée sur un BME280
Le BME280 est un composant qui fournit la température, la pression et l'hygrométrie.
Pour la programmation je me suis inspiré du site de Gilles Thebault : http://gilles.thebault.free.fr/spip.php?article47 ...merci à lui...!
Le code du programme arduino
Le code ci-dessous effectue les mesures de température, pression et humidité et aussi la lecture des trames du GPS.
#include <SoftwareSerial.h>
#include <Wire.h>
#include "SparkFunBME280.h"
BME280 bme280;
//Création de la variable SoftSerial (connexion software au port serie) RX sur le pin D2 et TX sur le pin D3
#define rxPin 10
#define txPin 11
// set up a new serial port
SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);
//On crée un tableau de caractères qui contiendra notre trame GPS
unsigned char buffer[256];
// On conserve l'heure courante
char heureCourante[10];
//la variable count nous servira à ne pas dépasser les 256 caractères du tableau.
int count=0;
// On déclenche une mesure de température, pression et humidité toutes les ...
long compteur = 0;
void setup() {
// Initialisation du GPS
// -----------------------
//On initialise le port série software
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);
mySerial.begin(9600);
// Initialisation du BME280
// ------------------------
//configuration du capteur
bme280.settings.commInterface = I2C_MODE;
bme280.settings.I2CAddress = 0x76;
bme280.settings.runMode = 3;
/*
bme280.settings.tStandby = ...
bme280.settings.tStandby = 0 durée du standby entre 2 mesures 0.5ms
bme280.settings.tStandby = 1 durée du standby entre 2 mesures 62.5ms
bme280.settings.tStandby = 2 durée du standby entre 2 mesures 125ms
bme280.settings.tStandby = 3 durée du standby entre 2 mesures 250ms
bme280.settings.tStandby = 4 durée du standby entre 2 mesures 500ms
bme280.settings.tStandby = 5 durée du standby entre 2 mesures 1000ms
bme280.settings.tStandby = 6 durée du standby entre 2 mesures 10ms
bme280.settings.tStandby = 7 durée du standby entre 2 mesures 20ms
*/
bme280.settings.tStandby = 0;
/*
bme280.settings.filter = ... (permet de filtrer et supprimer les variations brusques (courant d’air ...))
bme280.settings.filter = 0 pas de filtrage
bme280.settings.filter = 1 coefficient de filtrage 2
bme280.settings.filter = 2 coefficient de filtrage 4
bme280.settings.filter = 3 coefficient de filtrage 8
bme280.settings.filter = 4 coefficient de filtrage 16
*/
bme280.settings.filter = 0;
/*
* bme280.settings.tempOverSample = ...
bme280.settings.tempOverSample=0 pas de mesure de la température.
bme280.settings.tempOverSample=1 sur-échantillonnage x1. Résolution : 16 bit / 0.0050°C
bme280.settings.tempOverSample=2 sur-échantillonnage x2. Résolution : 17 bit / 0.0025°C
bme280.settings.tempOverSample=3 sur-échantillonnage x4. Résolution : 18 bit / 0.0012°C
bme280.settings.tempOverSample=4 sur-échantillonnage x8. Résolution : 19 bit / 0.0006°C
bme280.settings.tempOverSample=5 sur-échantillonnage x16. Résolution : 17 bit / 0.0003°C
*/
bme280.settings.tempOverSample = 1 ;
/*
* bme280.settings.pressOverSample =...
bme280.settings.pressOverSample =0 pas de mesure de pression
bme280.settings.pressOverSample =1 sur-échantillonnage x 1. Résolution 16 bit / 2.62 Pa
bme280.settings.pressOverSample =2 sur-échantillonnage x 2. Résolution 17 bit / 1.31 Pa
bme280.settings.pressOverSample =3 sur-échantillonnage x 4. Résolution 18 bit / 0.66 Pa
bme280.settings.pressOverSample =4 sur-échantillonnage x 8. Résolution 19 bit / 0.33 Pa
bme280.settings.pressOverSample =5 sur-échantillonnage x 16. Résolution 20 bit / 0.16 Pa
*/
bme280.settings.pressOverSample = 1;
/*
* bme280.settings.humidOverSample = ...
bme280.settings.humidOverSample =0 pas de mesure d’humidité
bme280.settings.humidOverSample =1 sur-échantillonnage x 1.
bme280.settings.humidOverSample =2 sur-échantillonnage x 2.
bme280.settings.humidOverSample =3 sur-échantillonnage x 4.
bme280.settings.humidOverSample =4 sur-échantillonnage x 8.
bme280.settings.humidOverSample =1 sur-échantillonnage x 16.
*/
bme280.settings.humidOverSample = 1;
Serial.println("Starting BME280... ");
delay(10); // attente de la mise en route du capteur. 2 ms minimum
// chargement de la configuration du capteur
bme280.begin();
//On initialise le port série de l'arduino
Serial.begin(9600);
Serial.println("Lancement...");
}
void loop() {
// On récupère la trame GPS
getGPS();
// Le relevé des mesures température, pression et humidité est rapide
// le compteur permet d'avoir un relevé toute les seconde environ
compteur++;
if (compteur>64000)
{
getBME280();
compteur = 0;
}
}
void getBME280() {
// Construit une trame au format similaire à NMEA
//sprintf(trame,"$BME280,%f,%f,%f*FF",bme280.readTempC(),bme280.readFloatPressure()/100,bme280.readFloatHumidity());
Serial.print("$BME280,");
Serial.print(heureCourante);
Serial.print(",");
Serial.print(bme280.readTempC(), 2);
Serial.print(",");
Serial.print(bme280.readFloatPressure()/100, 2);
Serial.print(",");
Serial.print(bme280.readFloatHumidity(), 2);
Serial.println("*FF"); // Checksum n'est pas calculé, il est là pour respecter la syntaxe.
}
void getGPS() {
static int trameEnCours = 0;
if (mySerial.available()>0)
{
char currentchar = mySerial.read();
if (trameEnCours == 1)
{
if ((currentchar != 0x0A) && (currentchar != 0x0D))
buffer[count++] = currentchar;
}
if (currentchar == '$')
{
trameEnCours = 1;
count=0;
buffer[count++] = '$';
}
if (currentchar == '*')
{
// Les caractères du checksum
while (mySerial.available()==0) ; // wait for one char
currentchar = mySerial.read();
buffer[count++] = currentchar;
while (mySerial.available()==0) ; // wait for one char
currentchar = mySerial.read();
buffer[count++] = currentchar;
trameEnCours = 0;
// conserver la date courante : $GPGGA,222625.00,4
if((buffer[1]=='G') && (buffer[2]=='P') && (buffer[3]=='G') && (buffer[4]=='G') && (buffer[5]=='A')) {
int i;
for (i=0; i<9;i++)
heureCourante[i]=buffer[i+7];
heureCourante[i]=0;
}
Serial.write(buffer,count);
Serial.println("");
}
}
}
Un témoin d'angle de barre
Le GPS
Le GPS est connecté sur les pin 10 et 11 de l'arduino. (10 = TX du GPS , 11 = RX du GPS)
Le code du programme pour gérer les trames NMEA du GPS
#include <SoftwareSerial.h>
//Création de la variable SoftSerial (connexion software au port serie) RX sur le pin D2 et TX sur le pin D3
#define rxPin 10
#define txPin 11
// set up a new serial port
SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);
//On crée un tableau de caractères qui contiendra notre trame GPS
unsigned char buffer[256];
//la variable count nous servira à ne pas dépasser les 200 caractères du tableau.
int count=0;
void setup() {
//On initialise le port série software
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);
mySerial.begin(9600);
//On initialise le port série de l'arduino
Serial.begin(9600);
Serial.println("Lancement...");
}
void loop() {
//On récupère la trame GPS
getGPS();
}
void getGPS() {
static int trameEnCours = 0;
if (mySerial.available()>0)
{
char currentchar = mySerial.read();
if (trameEnCours == 1)
{
if ((currentchar != 0x0A) && (currentchar != 0x0D))
buffer[count++] = currentchar;
}
if (currentchar == '$')
{
trameEnCours = 1;
count=0;
buffer[count++] = '$';
}
if (currentchar == '*')
{
trameEnCours = 0;
// buffer[count++] = 0; // Fin de la chaine de caractères
Serial.write(buffer,count);
Serial.println("");
}
}
}
//Fonction permettant de vérifier si la trame commence par les caractères $GPGGA
int isGPSGPGGA(unsigned char* trameGPS) {
if(trameGPS[0] == '$' && trameGPS[1] == 'G' && trameGPS[2] == 'P' && trameGPS[3] == 'G' && trameGPS[4] == 'G' && trameGPS[5] == 'A')
return 1;
else
return 0;
}
//Methode permettant de remettre à 0 le tableau de caractères
void clearBufferArray()
{
for (int i=0; i<count;i++)
{ buffer[i]=NULL;}
}
Exemple de trames générées
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.49,3.30,4.38*0F
$GPGSV,3,1,12,02,40,300,18,03,12,107,21,05,11,292,,06,61,218,20*75
$GPGSV,3,2,12,07,42,155,21,09,71,055,18,16,06,057,,19,08,225,*78
$GPGSV,3,3,12,23,40,060,17,26,05,031,07,29,02,343,,30,18,179,23*72
$GPGLL,4709.75657,N,00123.61570,W,192009.00,A,A*71
$GPRMC,192010.00,A,4709.75675,N,00123.61542,W,0.871,,200818,,,A*6C
$GPVTG,,T,,M,0.871,N,1.612,K,A*29
$GPGGA,192010.00,4709.75675,N,00123.61542,W,1,05,3.30,4.9,M,47.9,M,,*4F
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.49,3.30,4.38*0F
$GPGSV,3,1,12,02,40,300,17,03,12,107,20,05,11,292,,06,61,218,19*71
$GPGSV,3,2,12,07,42,155,22,09,71,055,17,16,06,057,,19,08,225,*74
$GPGSV,3,3,12,23,40,060,17,26,05,031,07,29,02,343,,30,18,179,23*72
$GPGLL,4709.75675,N,00123.61542,W,192010.00,A,A*78
$GPRMC,192011.00,A,4709.75666,N,00123.61571,W,0.362,,200818,,,A*66
$GPVTG,,T,,M,0.362,N,0.670,K,A*25
$GPGGA,192011.00,4709.75666,N,00123.61571,W,1,05,3.30,5.2,M,47.9,M,,*46
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.49,3.30,4.38*0F
$GPGSV,3,1,12,02,40,300,17,03,12,107,20,05,11,292,,06,61,218,19*71
$GPGSV,3,2,12,07,42,155,22,09,71,055,16,16,06,057,,19,08,224,*74
$GPGSV,3,3,12,23,40,060,17,26,05,031,07,29,02,343,,30,18,179,23*72
$GPGLL,4709.75666,N,00123.61571,W,192011.00,A,A*7B
$GPRMC,192012.00,A,4709.75763,N,00123.61639,W,0.905,,200818,,,A*65
$GPVTG,,T,,M,0.905,N,1.676,K,A*29
$GPGGA,192012.00,4709.75763,N,00123.61639,W,1,05,3.30,5.4,M,47.9,M,,*48
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.38*0E
$GPGSV,3,1,12,02,40,300,17,03,12,107,20,05,11,292,,06,61,218,18*70
$GPGSV,3,2,12,07,42,155,22,09,71,055,17,16,06,057,,19,08,224,*75
$GPGSV,3,3,12,23,40,060,17,26,05,031,07,29,02,343,,30,18,179,22*73
$GPGLL,4709.75763,N,00123.61639,W,192012.00,A,A*73
$GPRMC,192013.00,A,4709.75708,N,00123.61644,W,0.344,,200818,,,A*6C
$GPVTG,,T,,M,0.344,N,0.636,K,A*23
$GPGGA,192013.00,4709.75708,N,00123.61644,W,1,05,3.30,5.5,M,47.9,M,,*4F
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.38*0E
$GPGSV,3,1,12,02,40,300,17,03,12,107,19,05,11,292,,06,61,218,18*7A
$GPGSV,3,2,12,07,42,155,22,09,71,055,18,16,06,057,,19,08,224,*7A
$GPGSV,3,3,12,23,40,060,16,26,05,031,07,29,02,343,,30,18,179,21*71
$GPGLL,4709.75708,N,00123.61644,W,192013.00,A,A*75
$GPRMC,192014.00,A,4709.75743,N,00123.61658,W,0.743,,200818,,,A*6A
$GPVTG,,T,,M,0.743,N,1.376,K,A*20
$GPGGA,192014.00,4709.75743,N,00123.61658,W,1,05,3.30,5.8,M,47.9,M,,*47
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.38*0E
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,19*74
$GPGSV,3,2,12,07,42,155,22,09,71,055,18,16,06,057,,19,08,224,*7A
$GPGSV,3,3,12,23,40,060,16,26,05,031,08,29,02,343,,30,18,179,22*7D
$GPGLL,4709.75743,N,00123.61658,W,192014.00,A,A*70
$GPRMC,192015.00,A,4709.75755,N,00123.61721,W,0.989,,200818,,,A*6B
$GPVTG,,T,,M,0.989,N,1.832,K,A*23
$GPGGA,192015.00,4709.75755,N,00123.61721,W,1,05,3.30,6.1,M,47.9,M,,*44
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.38*0E
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,18*75
$GPGSV,3,2,12,07,42,155,23,09,71,055,18,16,06,057,,19,08,224,*7B
$GPGSV,3,3,12,23,40,060,17,26,05,031,08,29,02,343,,30,18,179,22*7C
$GPGLL,4709.75755,N,00123.61721,W,192015.00,A,A*79
$GPRMC,192016.00,A,4709.75726,N,00123.61727,W,0.662,,200818,,,A*60
$GPVTG,,T,,M,0.662,N,1.226,K,A*26
$GPGGA,192016.00,4709.75726,N,00123.61727,W,1,05,3.30,6.3,M,47.9,M,,*47
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.37*01
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,19*74
$GPGSV,3,2,12,07,42,155,23,09,71,055,18,16,06,057,,19,08,224,*7B
$GPGSV,3,3,12,23,40,060,17,26,05,031,08,29,02,343,,30,18,179,23*7D
$GPGLL,4709.75726,N,00123.61727,W,192016.00,A,A*78
$GPRMC,192017.00,A,4709.75647,N,00123.61751,W,0.741,,200818,,,A*66
$GPVTG,,T,,M,0.741,N,1.372,K,A*26
$GPGGA,192017.00,4709.75647,N,00123.61751,W,1,05,3.30,6.2,M,47.9,M,,*40
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.48,3.30,4.37*01
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,18*75
$GPGSV,3,2,12,07,42,155,23,09,71,055,19,16,06,057,,19,08,224,*7A
$GPGSV,3,3,12,23,40,060,17,26,05,031,08,29,02,343,,30,18,179,22*7C
$GPGLL,4709.75647,N,00123.61751,W,192017.00,A,A*7E
$GPRMC,192018.00,A,4709.75657,N,00123.61796,W,0.771,,200818,,,A*60
$GPVTG,,T,,M,0.771,N,1.428,K,A*2D
$GPGGA,192018.00,4709.75657,N,00123.61796,W,1,05,3.30,6.3,M,47.9,M,,*44
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.47,3.30,4.37*0E
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,19*74
$GPGSV,3,2,12,07,42,155,22,09,71,055,19,16,06,057,,19,08,224,*7B
$GPGSV,3,3,12,23,40,060,17,26,05,031,08,29,02,343,,30,18,179,22*7C
$GPGLL,4709.75657,N,00123.61796,W,192018.00,A,A*7B
$GPRMC,192019.00,A,4709.75635,N,00123.61707,W,0.286,,200818,,,A*60
$GPVTG,,T,,M,0.286,N,0.530,K,A*29
$GPGGA,192019.00,4709.75635,N,00123.61707,W,1,05,3.30,6.5,M,47.9,M,,*4F
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.47,3.30,4.37*0E
$GPGSV,3,1,12,02,40,300,18,03,12,107,19,05,11,292,,06,61,218,18*75
$GPGSV,3,2,12,07,42,155,22,09,71,055,19,16,06,057,,19,08,224,*7B
$GPGSV,3,3,12,23,40,060,16,26,05,031,08,29,02,343,,30,18,179,22*7D
$GPGLL,4709.75635,N,00123.61707,W,192019.00,A,A*76
$GPRMC,192020.00,A,4709.75682,N,00123.61680,W,0.209,,200818,,,A*6F
$GPVTG,,T,,M,0.209,N,0.386,K,A*25
$GPGGA,192020.00,4709.75682,N,00123.61680,W,1,05,3.30,6.5,M,47.9,M,,*47
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.47,3.30,4.37*0E
$GPGSV,3,1,12,02,40,300,17,03,12,107,18,05,11,292,,06,61,218,17*74
$GPGSV,3,2,12,07,42,155,22,09,71,055,20,16,06,057,,19,08,224,*71
$GPGSV,3,3,12,23,40,060,16,26,05,031,09,29,02,343,,30,18,179,22*7C
$GPGLL,4709.75682,N,00123.61680,W,192020.00,A,A*7E
$GPRMC,192021.00,A,4709.75652,N,00123.61685,W,0.321,,200818,,,A*6D
$GPVTG,,T,,M,0.321,N,0.594,K,A*2B
$GPGGA,192021.00,4709.75652,N,00123.61685,W,1,05,3.29,6.6,M,47.9,M,,*45
$GPGSA,A,3,23,03,06,09,07,,,,,,,,5.47,3.29,4.37*06
$GPGSV,3,1,12,02,40,300,17,03,12,107,18,05,11,292,,06,61,218,16*75
$GPGSV,3,2,12,07,42,155,21,09,71,055,20,16,06,057,,19,08,224,*72
$GPGSV,3,3,12,23,40,060,16,26,05,031,09,29,02,343,,30,18,179,22*7C
$GPGLL,4709.75652,N,00123.61685,W,192021.00,A,A*77
$GPRMC,192022.00,A,4709.75656,N,00123.61764,W,0.491,,200818,,,A*68
Le Raspberry
Le Raspberry sera raccordé au GPS et recevra les relevés du gyroscope, de l'accéléromètre et du magnétomètre via le port RS232.
Finalement , après réflexion le GPS est raccordé à l'Arduino.
L'acquisition des données
Pour l'acquisition des données j'ai utilisé :
un arduino NANO un capteur BME280 (Humidité, température, pression) un GPS Ublox Un capteur 9 axes (MPU 9250 (voir https://lucidar.me/fr/inertial-measurement-unit/mpu-9250-and-arduino-9-axis-imu/) Un raspberry relier à l'arduino NANO par une liaison série à 115200 baud.
Le MPU-9250 est constitué de plusieurs circuits encapsulés dans un seul boitier, il contient :
un accéléromètre 3 axes un gyroscope 3 axes un magnétomètre 3 axes
Le programme d'acquisition
La version du 2 mars 2020 du fichier NAVPI-central.ino.
la dernière version se trouve dans le gitlab ici.
/*
* NAVPI-centrale
* ce programme collecte les informations provenant de :
* - BME280 : pression, température, humidité
* - MPU-9250 : 9 axes
* - GPS ublox sur le port série
*/
#include <SoftwareSerial.h>
#include <BME280I2C.h>
#include <Wire.h>
// Liaison série utilisant les pins 10 et 11 digital
SoftwareSerial gpsSerial(10, 11);
BME280I2C bme; // Default : forced mode, standby time = 1000 ms
// Oversampling = pressure ×1, temperature ×1, humidity ×1, filter off,
void setup() {
// Initialisation des ports série
Serial.begin(115200);
gpsSerial.begin(9600);
// Initialisation du capteur BME280
initBME280();
// Initialisation de l'accéléromètre MPU 9250
initMPU9250();
}
int cpt=0;
void loop() {
readgps();
}
//--------------------------------------------------
//
// READGPS
//
//--------------------------------------------------
void readgps()
{
String str;
if(gpsSerial.available() > 0)
{
// Lecture sur le port série n°
//str = gpsSerial.readString();
str = gpsSerial.readStringUntil('\n');
// renvoie les données sur le port n°0
Serial.print(str);
Serial.print("\n");
//Serial.print(gpsSerial.read());
cpt=0;
}
else
{
if(cpt==0)
{
// Lectrue des autres périphériques dans les temps morts
printBME280Data(&Serial);
printMPU9250(&Serial);
cpt=1;
}
}
}
/*
BME280 I2C Test.ino
This code shows how to record data from the BME280 environmental sensor
using I2C interface. This file is an example file, part of the Arduino
BME280 library.
GNU General Public License
Written: Dec 30 2015.
Last Updated: Oct 07 2017.
Connecting the BME280 Sensor:
Sensor -> Board
-----------------------------
Vin (Voltage In) -> 3.3V
Gnd (Ground) -> Gnd
SDA (Serial Data) -> A4 on Uno/Pro-Mini, 20 on Mega2560/Due, 2 Leonardo/Pro-Micro
SCK (Serial Clock) -> A5 on Uno/Pro-Mini, 21 on Mega2560/Due, 3 Leonardo/Pro-Micro
*/
//--------------------------------------------------
//
// INITBME280
//
//--------------------------------------------------
void initBME280()
{
Wire.begin();
while (!bme.begin())
{
Serial.println("Could not find BME280 sensor!\n");
delay(1000);
}
// bme.chipID(); // Deprecated. See chipModel().
switch (bme.chipModel())
{
case BME280::ChipModel_BME280:
Serial.println("Found BME280 sensor! Success.");
break;
case BME280::ChipModel_BMP280:
Serial.println("Found BMP280 sensor! No Humidity available.");
break;
default:
Serial.println("Found UNKNOWN sensor! Error!");
}
}
//--------------------------------------------------
//
// printBME280Data
//
//--------------------------------------------------
void printBME280Data (Stream* client)
{
float temp(NAN), hum(NAN), pres(NAN);
BME280::TempUnit tempUnit(BME280::TempUnit_Celsius);
BME280::PresUnit presUnit(BME280::PresUnit_Pa);
bme.read(pres, temp, hum, tempUnit, presUnit);
// $GPGGA,,,,,,0,00,99.99,,,,,,*48
String str ="";
char data[100];
str += "$BME280,";
str +=temp;
str +=",";
str +=hum;
str +=",";
str +=pres;
str.getBytes(data, 100);
int c = checksum(data);
client->print(data);
sprintf(data,",*%02X",c);
client->println(data);
// delay(1000);
}
//--------------------------------------------------
//
// checksum(const char *s)
//
//--------------------------------------------------
int checksum(const char *s) {
int c = 0;
while(*s)
c ^= *s++;
return c;
}
//---------------------------------------------------------------------------------------------------------
//
// MPU9250
//
//---------------------------------------------------------------------------------------------------------
#define MPU9250_ADDRESS 0x68
#define MAG_ADDRESS 0x0C
#define GYRO_FULL_SCALE_250_DPS 0x00
#define GYRO_FULL_SCALE_500_DPS 0x08
#define GYRO_FULL_SCALE_1000_DPS 0x10
#define GYRO_FULL_SCALE_2000_DPS 0x18
#define ACC_FULL_SCALE_2_G 0x00
#define ACC_FULL_SCALE_4_G 0x08
#define ACC_FULL_SCALE_8_G 0x10
#define ACC_FULL_SCALE_16_G 0x18
// This function read Nbytes bytes from I2C device at address Address.
// Put read bytes starting at register Register in the Data array.
void I2Cread(uint8_t Address, uint8_t Register, uint8_t Nbytes, uint8_t* Data)
{
// Set register address
Wire.beginTransmission(Address);
Wire.write(Register);
Wire.endTransmission();
// Read Nbytes
Wire.requestFrom(Address, Nbytes);
uint8_t index=0;
while (Wire.available())
Data[index++]=Wire.read();
}
// Write a byte (Data) in device (Address) at register (Register)
void I2CwriteByte(uint8_t Address, uint8_t Register, uint8_t Data)
{
// Set register address
Wire.beginTransmission(Address);
Wire.write(Register);
Wire.write(Data);
Wire.endTransmission();
}
volatile bool intFlag=false;
//--------------------------------------------------
//
// INITMPU9250
//
//--------------------------------------------------
void initMPU9250()
{
// Set accelerometers low pass filter at 5Hz
I2CwriteByte(MPU9250_ADDRESS,29,0x06);
// Set gyroscope low pass filter at 5Hz
I2CwriteByte(MPU9250_ADDRESS,26,0x06);
// Configure gyroscope range
I2CwriteByte(MPU9250_ADDRESS,27,GYRO_FULL_SCALE_1000_DPS);
// Configure accelerometers range
I2CwriteByte(MPU9250_ADDRESS,28,ACC_FULL_SCALE_4_G);
// Set by pass mode for the magnetometers
I2CwriteByte(MPU9250_ADDRESS,0x37,0x02);
// Request continuous magnetometer measurements in 16 bits
I2CwriteByte(MAG_ADDRESS,0x0A,0x16);
pinMode(13, OUTPUT);
// Timer1.initialize(10000); // initialize timer1, and set a 1/2 second period
// Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
// Store initial time
//ti=millis();
}
void callback()
{
intFlag=true;
digitalWrite(13, digitalRead(13) ^ 1);
}
//--------------------------------------------------
//
// PRINTMPU9250
//
//--------------------------------------------------
void printMPU9250(Stream* client)
{
digitalWrite(13, digitalRead(13) ^ 1);
// ----------------------------------------
// accelerometer and gyroscope
// Read accelerometer and gyroscope
// ----------------------------------------
uint8_t Buf[14];
I2Cread(MPU9250_ADDRESS,0x3B,14,Buf);
// Create 16 bits values from 8 bits data
// Accelerometer
int16_t ax=-(Buf[0]<<8 | Buf[1]);
int16_t ay=-(Buf[2]<<8 | Buf[3]);
int16_t az=Buf[4]<<8 | Buf[5];
// Gyroscope
int16_t gx=-(Buf[8]<<8 | Buf[9]);
int16_t gy=-(Buf[10]<<8 | Buf[11]);
int16_t gz=Buf[12]<<8 | Buf[13];
// Creation de trame MPU9250 au format NMEA
String strmpu="";
strmpu += "$MPU9250,";
// Accelerometer
strmpu +=ax;
strmpu +=",";
strmpu +=ay;
strmpu +=",";
strmpu +=az;
strmpu +=",";
// Gyroscope
strmpu +=gx;
strmpu +=",";
strmpu +=gy;
strmpu +=",";
strmpu +=gz;
strmpu +=",";
// ----------------------------------------
// Magnetometer
// Read register Status 1 and wait for the DRDY: Data Ready
// ----------------------------------------
uint8_t ST1;
do
{
I2Cread(MAG_ADDRESS,0x02,1,&ST1);
}
while (!(ST1&0x01));
// Read magnetometer data
uint8_t Mag[7];
I2Cread(MAG_ADDRESS,0x03,7,Mag);
// Create 16 bits values from 8 bits data
// Magnetometer
//Serial.print ("mx:");
int16_t mx=-(Mag[3]<<8 | Mag[2]);
int16_t my=-(Mag[1]<<8 | Mag[0]);
int16_t mz=-(Mag[5]<<8 | Mag[4]);
// Magnetometer
int16_t i;
i=mx+200;
strmpu +=i;
strmpu +=",";
i=my-70;
strmpu +=i;
strmpu +=",";
i=mz-700;
strmpu +=i;
char data[100];
strmpu.getBytes(data, 100);
int c = checksum(data);
client->print(data);
sprintf(data,",*%02X",c);
client->println(data);
}
Exemple de sortie
Exemple de sortie récupérée sur le port série du raspberry.
- Les trames $BME280 et $MPU9250 ne sont pas standards. J'ai utilisé le même format avec une dénomination personnelle.
- Syntaxe de la trame $BME280 : $BME280,température,%humidité, Pression en Pa
- Syntaxe de la trame $MPU9250 : $MPU9250,ax,ay,az,gx,gy,gz,mx,my,mz
$GPGGA,221231.00,,,,,0,00,99.99,,,,,,*67 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPGSV,3,1,12,01,31,265,,08,84,303,15,10,46,058,,11,57,291,*7C $GPGSV,3,2,12,14,09,133,,16,14,178,25,20,16,047,,22,19,209,*78 $GPGSV,3,3,12,27,59,124,17,28,05,329,,30,02,300,,32,20,112,*76 $GPGLL,,,,,221231.00,V,N*4B $BME280,22.24,37.67,100573.97,*5B $MPU9250,4955,-590,4116,-10,66,-31,-105,-271,-847,*45 $GPRMC,221232.00,V,,,,,,,020320,,,N*7C $GPVTG,,,,,,,,,N*30 $GPGGA,221232.00,,,,,0,00,99.99,,,,,,*64 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPGSV,3,1,12,01,31,265,,08,84,303,14,10,46,058,28,11,57,291,*77 $GPGSV,3,2,12,14,09,133,,16,14,178,25,20,16,047,,22,19,209,*78 $GPGSV,3,3,12,27,59,124,17,28,05,329,,30,02,300,,32,20,112,*76 $GPGLL,,,,,221232.00,V,N*48 $BME280,22.22,37.74,100570.81,*5B $MPU9250,4955,-590,4121,-10,63,-32,-109,-269,-851,*45 $GPRMC,221233.00,V,,,,,,,020320,,,N*7D $GPVTG,,,,,,,,,N*30 $GPGGA,221233.00,,,,,0,00,99.99,,,,,,*65 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPGSV,3,1,12,01,31,265,,08,84,303,13,10,46,058,,11,57,291,28*70 $GPGSV,3,2,12,14,09,133,,16,14,178,25,20,16,047,,22,19,209,*78 $GPGSV,3,3,12,27,59,124,18,28,05,329,,30,02,300,,32,20,112,*79 $GPGLL,,,,,221233.00,V,N*49 $BME280,22.23,38.11,100573.19,*54 $MPU9250,4957,-593,4113,-10,65,-32,-112,-272,-848,*4B
Calculer le checksum
La somme de contrôle à la fin de chaque phrase est le XOR de tous les octets de la phrase, à l'exclusion du signe dollar initial.
- Le code C suivant génère une somme de contrôle pour la chaîne entrée en tant que "mystring" et l’affiche dans le flux de sortie. .
#include <stdio.h>
int checksum(const char *s) {
int c = 0;
while(*s)
c ^= *s++;
return c;
}
int main()
{
// La trame NMEA complete
// $GPGSV,3,1,12,02,40,300,18,03,12,107,21,05,11,292,,06,61,218,20*75
char mystring[] = "GPGSV,3,1,12,02,40,300,18,03,12,107,21,05,11,292,,06,61,218,20";
printf("String: %s\nChecksum: 0x%02X\n", mystring, checksum(mystring));
return 0;
}
Montage de la girouette et anémometre
La girouette
Mesure de 0 a 360 degres
Input voltage: 12V-24V DC The output signal "4-20mA Wind direction value = (Output current -4) / 16 * 360
L'anemometre
Range:0~32. 4 m/s
Supply voltagec:12V~24V DC Output signals:4~20 mA Load capacity:≤200Ω Wind speed values =(output current -4)/16*32.4
La carte de conversion
Description:
Module parameters
1, the working voltage: 9V ~ 17V 2, the input current: 4.00MA ~ 20.00MA 3, the output voltage: 0.00V ~ 5.00V / 4, the control mode: 4.00MA (mA) ~ 20.00MA (mA) input is converted to the corresponding 0.00v (V) to 5.00V (volts) 5, Size: (L) 26mm * (W) 23mm * (height) 10mm 6, drive: no drive. 7, Applications: Current signal transduction voltage signal; remote data acquisition and control equipment; 8, the module interface: 12V: power supply positive interfaces (9V ~ 17V). G: Power to the ground interface. IN: Signal input interface (4.00MA ~ 20.00MA). G: Power to the ground interface. OUT: Signal output connector (0.00V ~ 5.00V). G: Power to the ground interface.
Le programme
La formule de calcul donnée par la documentation
Wind speed value = (output voltage -0.4) /1.6*32.4
Les documents
- Doc anémomètre récupérée sur internet.
- Doc girouette.
Exploitation des données
NMEA
Les codes NMEA
All $GPxxx sentence codes and short descriptions (http://aprs.gids.nl/nmea/)
$GPAAM - Waypoint Arrival Alarm $GPALM - GPS Almanac Data $GPAPA - Autopilot Sentence "A" $GPAPB - Autopilot Sentence "B" $GPASD - Autopilot System Data $GPBEC - Bearing & Distance to Waypoint, Dead Reckoning $GPBOD - Bearing, Origin to Destination $GPBWC - Bearing & Distance to Waypoint, Great Circle $GPBWR - Bearing & Distance to Waypoint, Rhumb Line $GPBWW - Bearing, Waypoint to Waypoint $GPDBT - Depth Below Transducer $GPDCN - Decca Position $GPDPT - Depth $GPFSI - Frequency Set Information $GPGGA - Global Positioning System Fix Data $GPGLC - Geographic Position, Loran-C $GPGLL - Geographic Position, Latitude/Longitude $GPGSA - GPS DOP and Active Satellites $GPGSV - GPS Satellites in View $GPGXA - TRANSIT Position $GPHDG - Heading, Deviation & Variation $GPHDT - Heading, True $GPHSC - Heading Steering Command $GPLCD - Loran-C Signal Data $GPMTA - Air Temperature (to be phased out) $GPMTW - Water Temperature $GPMWD - Wind Direction $GPMWV - Wind Speed and Angle $GPOLN - Omega Lane Numbers $GPOSD - Own Ship Data $GPR00 - Waypoint active route (not standard) $GPRMA - Recommended Minimum Specific Loran-C Data $GPRMB - Recommended Minimum Navigation Information $GPRMC - Recommended Minimum Specific GPS/TRANSIT Data $GPROT - Rate of Turn $GPRPM - Revolutions $GPRSA - Rudder Sensor Angle $GPRSD - RADAR System Data $GPRTE - Routes $GPSFI - Scanning Frequency Information $GPSTN - Multiple Data ID $GPTRF - Transit Fix Data $GPTTM - Tracked Target Message $GPVBW - Dual Ground/Water Speed $GPVDR - Set and Drift $GPVHW - Water Speed and Heading $GPVLW - Distance Traveled through the Water $GPVPW - Speed, Measured Parallel to Wind $GPVTG - Track Made Good and Ground Speed $GPWCV - Waypoint Closure Velocity $GPWNC - Distance, Waypoint to Waypoint $GPWPL - Waypoint Location $GPXDR - Transducer Measurements $GPXTE - Cross-Track Error, Measured $GPXTR - Cross-Track Error, Dead Reckoning $GPZDA - Time & Date $GPZFO - UTC & Time from Origin Waypoint $GPZTG - UTC & Time to Destination Waypoint
Les données AIS
Pour gérer l'AIS j'ai mis en oeuvre un transpondeur AIS Matsuteck HA102
La liaison série (38400) donne ces informations lorsque le transpondeur n'est pas connecté à l'antenne GPS , ni à l'antenne VHF.
$GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 !AIVDO,1,1,,B,B00000000;?8mP=18D3Q3wP10400,0*57 !AIVDO,1,1,,A,C00000000;?8mP=18D3Q3wP000000000000000000000BP`4T3R0,0*13 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPVTG,,,,,,,,,N*30 $GPGGA,,,,,,0,00,99.99,,,,,,*48 $GPRMC,,V,,,,,,,,,,N*53 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 !AIVDO,1,1,,B,B00000000;?8mP=18D3Q3wP10D00,0*27 !AIVDO,1,1,,A,C00000000;?8mP=18D3Q3wP000000000000000000000BP`4T3R0,0*13 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPVTG,,,,,,,,,N*30 $GPGGA,,,,,,0,00,99.99,,,,,,*48 $GPRMC,,V,,,,,,,,,,N*53 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 !AIVDO,1,1,,B,B00000000;?8mP=18D3Q3wP10400,0*57 !AIVDO,1,1,,A,C00000000;?8mP=18D3Q3wP000000000000000000000BP`4T3R0,0*13 $GPRMC,,V,,,,,,,,,,N*53 $GPRMC,,V,,,,,,,,,,N*53 $GPVTG,,,,,,,,,N*30 $GPGGA,,,,,,0,00,99.99,,,,,,*48
Voici le lien vers AIVDM/AIVDO protocol decoding : https://gpsd.gitlab.io/gpsd/AIVDM.html
La carte d'aquisition des données
La carte d'aquisition des données contient :
- un arduino NANO
- un capteur BME280 (Humidité, température, pression)
- un GPS Ublox
- Un capteur 9 axes (MPU 9250 (voir https://lucidar.me/fr/inertial-measurement-unit/mpu-9250-and-arduino-9-axis-imu/)
Le MPU-9250 est constitué de plusieurs circuits encapsulés dans un seul boitier, il contient : un accéléromètre 3 axes un gyroscope 3 axes un magnétomètre 3 axes
Liens utiles
- AIVDM/AIVDO protocol decoding : https://gpsd.gitlab.io/gpsd/AIVDM.html